研究業績 こちらもご参照ください [長山・研究者情報ページへ]
-
指導学生の受賞(2023-2024)
がんばって多くの研究成果を発表し、奨学金返済免除を獲得した卒業生もおります!
太田倫太郎:生体医工学シンポジウム2024 ベストリサーチアワード,2024年9月14日
「Rintaro OTA and Kazuaki NAGAYAMA:Atomic force microscopy estimation of mechanical properties of tunneling nanotubes in cancer cells」に対して.神邊千穂:日本機械学会2024年度茨城講演会 優秀講演賞 2024年8月30日
「神邊千穂,長山和亮:生体組織・細胞の構造支持を司るアクチンストレスファイバの力学特性解析」に対して.太田倫太郎:日本機械学会2024年度茨城講演会 優秀講演賞 2024年8月30日
「太田倫太郎,長山和亮:がん細胞間の情報伝達を担うナノファイバの 力学特性と機械的役割に関する研究」に対して.大内椋太:日本機械学会2024年度茨城講演会 優秀講演賞 2024年8月30日
「大内椋太,広瀬裕一,長山和亮,上杉薫:ホヤ表面ナノ構造の防汚機能メカニズム解明に向けた摩擦力測定システムの構築」に対して.太田倫太郎:日本機械学会関東学生会第63回卒業研究発表講演会 Best Presentation Award,2024年4月16日
「太田倫太郎,長山和亮:がん細胞の情報伝達を担う細胞膜ナノチューブの力学特性に関する研究」に対して.弓野奎斗:日本機械学会 M&M2023 材料力学カンファレンス 若手優秀講演フェロー賞 2024年1月18日
「弓野奎斗,長山和亮:アクチンストレスファイバのレーザ切断による細胞の損傷修復メカニズム解析」に対して.廣岡祐仁:日本生体医工学会関東支部若手研究者発表会2023 優秀論文発表賞 2023年12月9日
「廣岡祐仁,中村麻子,長山和亮:局所的圧縮による皮膚線維芽細胞の組織的運動とDNA損傷との関わり」に対して.太田倫太郎:日本生体医工学会関東支部若手研究者発表会2023 優秀論文発表賞 2023年12月9日
「太田倫太郎,長山和亮:がん細胞間の情報伝達をになうトンネルナノチューブ様構造の力学特性に関する研究」に対して.弓野奎斗:日本機械学会2023年度茨城講演会 優秀講演賞 2023年8月19日
「弓野奎斗,長山和亮:レーザアブレーション法を用いた細胞のマイクロ損傷回復メカニズム解析」に対して.【2022年度以前の指導学生の受賞】
-
学術誌論文
2024
長山和亮,大橋未来, 段木穂高, 竹田晃人: データ分析プラットフォーム Usiigaci を用いた機械学習による 無染色位相差顕微鏡画像からの細胞核領域の検出とその評価, 日本機械学会論文集90, 939, 24-00180, 2024.
(https://doi.org/10.1299/transjsme.24-00180) Ota R, Nagayama K: Atomic force microscopy estimation of mechanical properties of tunneling nanotubes in cancer cells , Advanced Biomedical Engineering (in press) 2024.
(https://doi.org/10.1016/j.jmbbm.2024.106744) Nagayama K, Nogami K, Sugano S, Nakazawa M: Dedifferentiation- and aging-induced loss of mechanical contractility and polarity in vascular smooth muscle cells: Heterogeneous changes in macroscopic and microscopic behavior of cells in serial passage culture, Journal of the Mechanical Behavior of Biomedical Materials 160, 106744, 2024.
(https://doi.org/10.1016/j.jmbbm.2024.106744) Nagayama K, Wataya N: Mechanical Trapping of the Cell Nucleus Into Microgroove Concavity But Not On Convexity Induces Cell Tissue Growth and Vascular Smooth Muscle Differentiation, Cellular and Molecular Bioengineering (in press), 2024.
(https://doi.org/10.1007/s12195-024-00827-w) Nagayama K, Hirooka Y: Changes in the mechanical environment of the nucleus with cell crowding and its effects on DNA damage resistance, Journal of Biosciences and Medicines (in press), 2024.
Nagayama K, Tatsuno H: Suppression of cell traction force and enhanced force polarity are key factors in vascular smooth muscle cell differentiation induced by low serum culture, Journal of Biosciences and Medicines (in press), 2024.
Uesugi K, Obata S, Nagayama K: Micro tensile tester measurement of biomechanical properties and adhesion force of microtubule-polymerization-inhibited cancer cells, Journal of the Mechanical Behavior of Biomedical Materials 156, 106586, 2024.
(https://doi.org/10.1016/j.jmbbm.2024.106586) 2023
Yamashiro Y, Ramirez K, Nagayama K, Hattori N, Liu Y, Matsunaga S, Tomita S, Kubota Y, Yanagisawa H: Partial endothelial-to-mesenchymal transition (EndMT) mediated by HIF-induced CD45 in neointima formation upon carotid artery ligation, Cardiovascular Research 119(7), 1606-1618, 2023.
(https://doi.org/10.1093/cvr/cvac190) Katsuta H, Okuda S, Nagayama K, Machiyama H, Kidoaki S, Kato M, Sokabe M, Miyata T, Hirata H: Actin crosslinking by α-actinin averts viscous dissipation of myosin force transmission in stress fibers, iScience, 26(3), 106090, 2023.
(https://www.cell.com/iscience/fulltext/S2589-0042(23)00167-0) Nagayama K, Hanzawa T, Sato A: Superficial groove structure in the size of focal adhesion can clarify cell-type-specific differences in force-dependent substrate mechanosensing, Journal of Biomechanical Science and Engineering 18(3), 22-00474, 2023.
(https://doi.org/10.1299/jbse.22-00474) 綿谷直樹,長山和亮: マイクロ溝凹部での力学的拘束による血管平滑筋細胞の配列組織化と分化誘導, 日本機械学会論文集89, 920, 23-00004, 2023.
(https://doi.org/10.1299/transjsme.23-00004) Nagayama K, Sagawa C, Sato A: Deformation and trapping of cell nucleus using micropillar substrates possibly affect UV radiation resistance of DNA, Journal of Robotics and Mechatronics, Special Issue on “Bio-MEMS” 35(5), 1158-1164, 2023.
(https://www.fujipress.jp/jrm/rb/robot003500051158/) 2022
Nagayama K, Kodama F, Wataya N, Sato A, Matsumoto T: Changes in the intra- and extra- mechanical environment of the nucleus in Saos-2 osteoblastic cells during bone differentiation process:Nuclear shrinkage and stiffening in cell differentiation, Journal of the Mechanical Behavior of Biomedical Materials 138, 105630, 2022.
(https://doi.org/10.1016/j.jmbbm.2022.105630) Sugita S, Hozaki M, Matsui ST, Nagayama K, Deguchi S, Nakamura M: Polarized light retardation analysis allows for the evaluation of tension in individual stress fibers, Biochemical and Biophysical Research Communications, 625(10), 49-55, 2022.
(https://doi.org/10.1016/j.bbrc.2022.06.066) Nagayama K, Hanzawa T: Cell type-specific orientation and migration responses for a microgrooved surface with shallow grooves, Bio-Medical Materials and Engineering 33(5), 393-406, 2022.
(https://doi.org/10.3233/BME-211356) Shiota T, Nagata R, Kikuchi S, Nanaura H, Matsubayashi M, Nakanishi M, Kobashigawa S, Isozumi N, Kiriyama T, Nagayama K, Sugie K, Yamashiro Y, Mori E: C9orf72-derived proline:arginine poly-dipeptides modulate cytoskeleton and mechanical stress response, Frontiers Cell and Developmental Biology 10, Article No.750829, 2022.
(https://doi.org/10.3389/fcell.2022.750829) 2021
Nagayama K: A loss of nuclear–cytoskeletal interactions in vascular smooth muscle cell differentiation induced by a micro-grooved collagen substrate enabling the modeling of an in vivo cell arrangement, Bioengineering 8(9), 124, 2021.
(https://doi.org/10.3390/bioengineering8090124) 上杉薫,佐藤賢也,長山和亮: 細胞への静水圧刺激負荷による紫外線誘導DNA損傷の抑制効果, 実験力学, 21(3), 208-214, 2021.
(https://doi.org/10.11395/jjsem.21.208) Uesugi K, Nagayama K, Hirose E: Keeping a Clean Surface under Water: Nanoscale Nipple Array Decreases Surface Adsorption and Adhesion Forces, Journal of Marine Science and Engineering 10(1), 81, 2021.
(https://doi.org/10.3390/jmse10010081) 2020
小幡祥太,長山和亮: インプロセス型マイクロ引張試験機の開発と細胞の力学特性・接着力の実測(子宮頸癌由来HeLa細胞の引張特性と接着力の定量評価), 日本機械学会論文集86, 892, 20-00311, 2020.
(https://doi.org/10.1299/transjsme.20-00311) 半沢達也,長山和亮: 微細溝基板上での血管平滑筋細胞ならびにHeLa細胞の運動解析 (細胞種による微細溝環境感知能の違い), 日本機械学会論文集 86, 892, 20-00301, 2020.
(https://doi.org/10.1299/transjsme.20-00301) Yamashiro Y, Thang BQ, Ramirez K, Shin SJ, Kohata T, Ohata S, Nguyen TAV, Ohtsuki S, Nagayama K, Yanagisawa H: Matrix mechanotransduction mediated by thrombospondin-1/integrin/YAP signaling pathway in the remodeling of blood vessels, Proc. Natl. Acad. Sci. USA 117 (18), 9896-9905, 2020.
(https://doi.org/10.1073/pnas.1919702117) Nagayama K, Ohata S, Obata S, Sato A: Macroscopic and microscopic analysis of the mechanical properties and adhesion force of cells using a single cell tensile test and atomic force microscopy: remarkable differences in cell types, Journal of the Mechanical Behavior of Biomedical Materials 110, 103935, 2020.
(https://doi.org/10.1016/j.jmbbm.2020.103935) Nagayama K, Nishimiya K: Moderate Substrate Stiffness Induces Vascular Smooth Muscle Cell Differentiation Through Cellular Morphological and Tensional Changes, Bio-Medical Materials and Engineering 31(3),157-167, 2020.
(https://doi.org/10.3233/BME-201087) 長山和亮,野上謙三,菅野隼多: 弾性マイクロピラーと短パルスレーザ切断システムを使った血管構成細胞の収縮能力の定量解析,-細胞の脱分化と老化に伴うアクチン細胞骨格の張力の変化-, 精密工学会誌 86 (10), 813-818, 2020.
(https://doi.org/10.2493/jjspe.86.813) Nagayama K, Fukuei T: Cyclic stretch-induced mechanical stress to the cell nucleus inhibits ultraviolet radiation-induced DNA damage, Biomechanics and Modeling in Mechanobiology 19, 493-504, 2020.
(https://doi.org/10.1007/s10237-019-01224-3) Nagayama K: Mechanical Stress to Cell Nucleus Inhibits Proliferation and Differentiation of Vascular Smooth Muscle Cells, Journal of Biosciences and Medicines 8, 132-141, 2020.
(https://doi.org/10.4236/jbm.2020.85013) 2019
Nagayama K: Biomechanical analysis of the mechanical environment of the cell nucleus in serum starvation-induced vascular smooth muscle cell differentiation, Journal of Biomechanical Science and Engineering 14(4): 19-00364, 2019.
【JBSE "Papers of the Year Award" と "Graphics of the Year Award" を同時受賞】【2021年度 日本機械学会賞(論文)受賞】(https://doi.org/10.1299/jbse.19-00364) Nagayama K, Suzuki Y, Fujiwara D: Directional dependence of cyclic stretch-induced cell migration in wound healing process of monolayer cells, Advanced Biomedical Engineering 8, 163-169, 2019.
(https://doi.org/10.14326/abe.8.163) 長山和亮,大畠成暁: 顕微鏡下マイクロ引張試験機による血管構成細胞のスティフネスと接着力の定量解析 (細胞の硬さと接着力の実測), 精密工学会誌 85 (9), 800-804, 2019.
(https://doi.org/10.2493/jjspe.85.800) Maeda E, Atsumi Y, Ishiguro M, Nagayama K, Matsumoto T: Shape-dependent regulation of differentiation lineages of bone marrow-derived cells under cyclic stretch, Journal of Biomechanics 96(109371), 1-8, 2019.
(https://doi.org/10.1016/j.jbiomech.2019.109371) Nagayama K, Uchida K, Sato A: A novel micro-grooved collagen substrate for inducing vascular smooth muscle differentiation through cell tissue arrangement and nucleus remodeling, Journal of the Mechanical Behavior of Biomedical Materials 90:295-305, 2019.
(https://doi.org/10.1016/j.jmbbm.2018.10.005) 2018
Nagayama K, Inoue T, Hamada Y, Sugita S, Matsumoto T: Direct application of mechanical stimulation to cell adhesion sites using a novel magnetic-driven micropillar substrate, Biomedical Microdevices 20(4):85, 2018.
(https://doi.org/10.1007/s10544-018-0328-y) 長山和亮,西宮昂平: 基質弾性率の変化が血管平滑筋細胞の形態・張力・分化に及ぼす影響 (原子間力顕微鏡を用いた細胞の表面形態・張力変化の解析), 日本機械学会論文集 84, 868, 2018.
(https://doi.org/10.1299/transjsme.18-00387) Bansod YD, Matsumoto T, Nagayama K, Bursa J: A Finite Element Bendo-Tensegrity Model of Eukaryotic Cell, Journal of Biomechanical Engineering 140(10), 2018.
(https://doi.org/10.1115/1.4040246) Oota-Ishigaki A, Masuzawa T, Nagayama K: Analysis of the effect of the size of three-dimensional micro-geometric structures on physical adhesion phenomena using microprint technique, The International Journal of Artificial Organs 41(5):277-283, 2018.
(https://doi.org/10.1177/0391398818763264) Maeda E, Ichikawa K, Murase K, Nagayama K, Matsumoto T: Ex-vivo observation of calcification process in chick tibia slice: Augmented calcification along collagen fiber orientation in specimens subjected to static stretch, Journal of Biomechanics. 78:94-101, 2018.
(https://doi.org/10.1016/j.jbiomech.2018.07.024) 越生康寛, 長山和亮, 後藤哲哉, 尾関和秀:Si含有リン酸カルシウム薄膜の作製と細胞接着性評価, バイオインテグレーション学会誌. 8:123-126, 2018.
2017
Nagayama K, Inoue T, Hamada Y, Matsumoto T: A novel patterned magnetic micropillar array substrate for analysis of cellular mechanical responses,Journal of Biomechanics 65, 194-202, 2017.
(https://doi.org/10.1016/j.jbiomech.2017.10.017) Maeda E, Nakagaki M, Ichikawa K, Nagayama K, Matsumoto T: Effects of cyclic compression on the mechanical properties and calcification process of immature chick bone tissue in culture, Bone Reports 6, 120-128, 2017.
(https://doi.org/10.1016/j.bonr.2017.04.002) 佐川千秋, 長山和亮: マイクロピラー基板を用いた核の力学的拘束が細胞の紫外線耐性に与える影響, 日本機械学会論文集 83, 846, p. 16-00425, 2017.
(https://doi.org/10.1299/transjsme.16-00425) Yaguchi T, Cong Y, Shimo K, Kurokawa T, Sugita S, Nagayama K, Masuda H, Matsumoto T: A Novel Apparatus for the Multifaceted Evaluation of Arterial Function Through Transmural Pressure Manipulation, Annals of Biomedical Engineering 45(6):1487-1495, 2017.
(https://doi.org/10.1007/s10439-017-1810-z) 2016
Nagasaka A, Shinoda T, Kawaue T, Suzuki M, Nagayama K, Matsumoto T, Ueno N, Kawaguchi A, Miyata T: Differences in the Mechanical Properties of the Developing Cerebral Cortical Proliferative Zone between Mice and Ferrets at both the Tissue and Single-Cell Levels, Frontiers in Cell and Developmental Biology 4-139, 2016
(https://doi.org/10.3389/fcell.2016.00139) 長山和亮, 福栄智大: 繰返引張ひずみによる核の形態変化と細胞紫外線耐性向上の可能性, 生体医工学 54(4), 184-191, 2016.
(https://doi.org/10.11239/jsmbe.54.184) Wang J, Sugita S, Nagayama K, Matsumoto T: Dynamics of actin filaments of MC3T3-E1 cells during adhesion process to substrate, Journal of Biomechanical Science and Engineering 11(2): 15-00637, 2016.
【JBSE "Papers of the Year Award" と "Graphics of the Year Award" を同時受賞】(https://doi.org/10.1299/jbse.15-00637) 2015
長山和亮: 弾性マイクロピラー基板を用いた細胞張力の定量解析と細胞内の核に加わる力の推定, 日本機械学会論文集 81, 824, p.14-00692, 2015.
(https://doi.org/10.1299/transjsme.14-00692) Nagayama K, Hamaji Y, Sato Y, Matsumoto T: Mechanical trapping of the nucleus on micropillared surfaces inhibits the proliferation of vascular smooth muscle cells but not cervical cancer HeLa cells, Journal of Biomechanics 48(10): 1796-1803, 2015.
(https://doi.org/10.1016/j.jbiomech.2015.05.004) Nagayama K, Saito S, Matsumoto T: Multiphasic stress relaxation response of freshly isolated and cultured vascular smooth muscle cells measured by quasi-in situ tensile test, Bio-Medical Materials and Engineering 25(3): 299-312, 2015.
(https://doi.org/10.3233/BME-151276) 2014
Nagayama K, Yamazaki S, Yahiro Y, Matsumoto T: Estimation of the mechanical connection between apical stress fibers and the nucleus in vascular smooth muscle cells cultured on a substrate, Journal of Biomechanics 47(6): 1422-1429, 2014.
(https://doi.org/10.1016/j.jbiomech.2014.01.042) 2013以前(茨城大着任前(名古屋工業大学,東北大学))
Banjo T, Grajcarek J, Yoshino D, Osada H, Miyasaka KY, Kida YS, Ueki Y, Nagayama K, Kawakami K, Matsumoto T, Sato M, Ogura T: Haemodynamically dependent valvulogenesis of zebrafish heart is mediated by flow-dependent expression of miR-21, Nature Communications 4:1978, 2013.
(https://www.nature.com/articles/ncomms2978) 矢口俊之, 武澤健司, 長山和亮, 益田博之, 松本 健郎: ヒト橈骨動脈の圧−径関係の非侵襲計測法の確立とこれに対する平滑筋収縮状態の影響評価, ライフサポート, 25(4): 143-150, 2013.
(https://doi.org/10.5136/lifesupport.25.143) Hara Y, Nagayama K, Yamamoto TS, Matsumoto T, Suzuki M, Ueno N: Directional migration of leading-edge mesoderm generates physical forces: Implication in Xenopus notochord formation during gastrulation, Developmental Biology 382(2):482-495, 2013.
(https://doi.org/10.1016/j.ydbio.2013.07.023) Nagayama K, Yahiro Y, Matsumoto T: Apical and Basal Stress Fibers have Different Roles in Mechanical Regulation of the Nucleus in Smooth Muscle Cells Cultured on a Substrate, Cellular and Molecular Bioengineering 6(4): 473–481, 2013.
(https://doi.org/10.1007/s12195-013-0294-7) Hirano T, Kobayashi A, Nakaza T, Kitagawa S, Ohtani H, Nagayama K, Matsumoto T: Low-flow-resistance Methacrylate-based Polymer Monolithic Column Prepared by Low-conversion Ultraviolet Photopolymerization at Low Temperature, Analytical Sciences 29(2): 205-211, 2013.
(https://doi.org/10.2116/analsci.29.205) Nagayama K, Adachi A, Matsumoto T: Dynamic Changes of Traction Force at Focal Adhesions during Macroscopic Cell Stretching Using an Elastic Micropillar Substrate: Tensional Homeostasis of Aortic Smooth Muscle Cells, Journal of Biomechanical Science and Engineering 7(2):130-140, 2012.
【JBSE "Papers of the Year Award" と "Graphics of the Year Award" を同時受賞】(https://doi.org/10.1299/jbse.7.130) Matsumoto T, Nagayama K: Tensile properties of vascular smooth muscle cells: bridging vascular and cellular biomechanics 【Review】, Journal of Biomechanics 45(5):745-755, 2012.
(https://doi.org/10.1016/j.jbiomech.2011.11.014) Nagayama K, Kimura Y, Makino N, Matsumoto T: Strain waveform dependence of stress fiber reorientation in cyclically stretched osteoblastic cells: effects of viscoelastic compression of stress fibers, American Journal of Physiology: Cell Physiology 302(10):C1469-1478, 2012.
(https://doi.org/10.1152/ajpcell.00155.2011) Nagayama K, Adachi A, Matsumoto T: Heterogeneous response of traction force at focal adhesions of vascular smooth muscle cells subjected to macroscopic stretch on a micropillar substrate, Journal of Biomechanics 44(15):2699-2705, 2011.
(https://doi.org/10.1016/j.jbiomech.2011.07.023) Nagayama K, Yahiro Y, Matsumoto T: Stress fibers stabilize the position of intranuclear DNA through mechanical connection with the nucleus in vascular smooth muscle cells, FEBS Letters 585(24):3992-3997. 2011.
(https://doi.org/10.1016/j.febslet.2011.11.006) Nagayama K, Matsumoto T: Dynamic Change in Morphology and Traction Forces at Focal Adhesions in Cultured Vascular Smooth Muscle Cells During Contraction, Cellular and Molecular Bioengineering 4(3):348–357, 2011.
【Selected for the cover art of the journal】(https://doi.org/10.1007/s12195-011-0166-y) Miyasaka KY, Kida YS, Banjo T, Ueki Y, Nagayama K, Matsumoto T, Sato M, Ogura T: Heartbeat regulates cardiogenesis by suppressing retinoic acid signaling via expression of miR-143, Mechanisms of Development 128(1-2):18-28, 2011.
(https://doi.org/10.1016/j.mod.2010.09.002) Nagayama K, Matsumoto T: Estimation of single stress fiber stiffness in cultured aortic smooth muscle cells under relaxed and contracted states: Its relation to dynamic rearrangement of stress fibers, Journal of Biomechanics 28;43(8):1443-1449, 2010.
(https://doi.org/10.1016/j.jbiomech.2010.02.007) Matsumoto T, Ikuta N, Mori M, Nagayama K: Mechanics of wrinkle formation: Micromechanical analysis of skin deformation during wrinkle formation in UV-irradiated mice, Skin Research and Technology 16(2):179-189, 2010.
(https://doi.org/10.1111/j.1600-0846.2009.00419.x) Nagayama K, Morishima N, Matsumoto T: Effects of Three-Dimensional Culture and Cyclic Stretch Stimulation on Expression of Contractile Proteins in Freshly Isolated Rat Aortic Smooth Muscle Cells, Journal of Biomechanical Science and Engineering 4(2): 286-297, 2009.
(https://doi.org/10.1299/jbse.4.286) Nagayama K, Matsumoto T: Contribution of actin filaments and microtubules to quasi-in situ tensile properties and internal force balance of cultured smooth muscle cells on a substrate, American Journal of Physiology: Cell Physiology 295(6):C1569-1578, 2008.
(https://doi.org/10.1152/ajpcell.00098.2008) Tamura A, Hayashi S, Watanebe I, Nagayama K, Matsumoto T: Effects of pre-impact body orientation on traumatic brain injury in a vehicle pedestrian collision, International Journal of Vehicle Safety (IJVS) 3(4): 351-370, 2008.
(https://doi.org/10.1504/IJVS.2008.025076) Nagayama K, Yanagihara S, Matsumoto T: Actin Filaments Affect Not only Elasticity But Also Late Viscous Response in Stress Relaxation of Single Isolated Aortic Smooth Muscle Cells, Journal of Biomechanical Science and Engineering 2(3): 93-104, 2007.
(https://doi.org/10.1299/jbse.2.93) Nagayama K, Yanagihara S, Matsumoto T: A novel micro tensile tester with feed-back control for viscoelastic analysis of single isolated smooth muscle cells, Medical Engineering and Physics 29(5): 620-628, 2007.
(https://www.sciencedirect.com/science/article/abs/pii/S1350453306001585) Tamura A, Hayashi S, Watanebe I, Nagayama K, Matsumoto T: Mechanical Characterization of Brain Tissue in High-Rate Compression, Journal of Biomechanical Science and Engineering 2(3): 115-126, 2007.
(https://doi.org/10.1299/jbse.2.115) Nagayama K, Tsugawa A, Matsumoto T: Tensile Properties of Cultured Aortic Smooth Muscle Cells Obtained in a quasi-in situ Tensile Test with Thermoresponsive Gelatin, Journal of Biomechanical Science and Engineering 1(1): 256-267, 2006.
【日本機械学会賞(論文)受賞】(https://doi.org/10.1299/jbse.1.256) Nagayama K, Nagano Y, Sato N, Matsumoto T: Effect of actin filament distribution on tensile properties of smooth muscle cells obtained from rat thoracic aortas, Journal of Biomechanics 39(2):293-301, 2006.
(https://doi.org/10.1016/j.jbiomech.2004.11.019) Nagayama K, Matsumoto T: Observation of Cell Shortening and Dynamic Changes of Actin Filaments during Cell Detachment from Thermoresponsive-Gelatin-Coated Substrate, JSME International Journal Series C 48(4): 411-418, 2005.
(https://doi.org/10.1299/jsmec.48.411) Nagayama K, Matsumoto T: Mechanical Anisotropy of Rat Aortic Smooth Muscle Cells Decreases with Their Contraction, JSME International Journal Series C 47(4): 985-991, 2004.
(https://doi.org/10.1299/jsmec.47.985) 中垣将, 柳原辰一郎, 長山和亮, 松本健郎: 細胞用二軸繰返引張機構の開発とこれを用いた血管内皮細胞の力学応答の解析, 日本機械学会論文集(A編) 70(694): 887-896, 2004.
(https://www.jstage.jst.go.jp/article/kikaia1979/70/694/70_694_887/_pdf) 長山和亮, 佐々木実, 羽根一博, 松本健郎, 佐藤正明: 細胞の力学特性計測のためのレーザ顕微鏡組込み型原子間力顕微鏡(AFM)システムの開発, 日本機械学会論文集(C編) 70(691): 736-742, 2004.
【日本機械学会賞(論文)受賞】(https://www.jstage.jst.go.jp/article/kikaia1979/70/694/70_694_887/_pdf) Sato M, Nagayama K, Kataoka N, Sasaki M, Hane K: Local mechanical properties measured by atomic force microscopy for cultured bovine endothelial cells exposed to shear stress, Journal of Biomechanics 33(1): 127-135, 2000.
(https://doi.org/10.1016/S0021-9290(99)00178-5) -
著書&解説
-準備中-
-
学会発表
-準備中-
-
受賞
-準備中-(こちらをご参照ください
[研究者情報ページへ] )